

Long distance propagation of intense fs laser pulses in air

J Zhang ZQ Hao, X Lu, Z Zhang, YT Li, ZM Sheng, ZH Wang, ZY Wei

Institute of Physics, CAS

Outline

- 1. Formation of plasma channels
- 2. Rich physics in plasma channels
- 3. Temporal and spatial control

Mechanism for channel formation

Mechanism for channel formation

Balance between kerr focusing and plasma defocusing

A plasma channel over km

Setup for imaging the filaments

Diagnostics of plasma channels

Control of self focusing

Divergence controlled by deformable mirror

Observation of self focusing

Self focusing vs divergence angle

Control of temporal behaviour

- 1. 成丝起点
- 2. 成丝长度
- 3. 超连续光谱

Effects of the initial chirp on the propagation

H. Wille, M. Rodriguez, J. Kasparian, et al. Eur. Phys. J. AP 20, 183–190 (2002)

Control of initial chirp

Effects of temporal charactertics

123.6 fs

79 fs

Starting of the filaments

- 1. 随正/负啁啾增大成 丝起点位置变远
- 2. 同样脉宽下,能量 越大成丝越靠前

Simulated filaments for small laser energy

E=5mJ; τ =50fs; f=2m

Simulated filaments for increased laser energy

E=50mJ; τ =50fs; f=15m

Temporal development of filaments

1 ns (a), 5 ns (b), and 10 ns (c) 1/e² contours (d)

Spatial development of filaments

Single and multi filaments

30fs, 22mJ, f=4m

30fs, 20mJ, f=1m

Filaments vs laser energy

Supercontinuum emission

Supercontinuum emission

- (b) 257 fs
- (c) 390 fs

E = 50mJ

Supercontinuum spectrum

Spatial conherence - Young's double-slit experiments

Coherence measurements at 400-900 nm

Results with a single pulse

单脉冲情况下的信号,半高宽大约12纳秒,底部宽 度为50-60纳秒

Results after adding the second pulse

1箭头所指的是两个脉冲延时的位置。从图中可以看出信号的宽度的半高宽可以达到50ns,而且在信号的尾部存在一个长达150ns的平台,如箭头2所示

A pulse train with 16 pulses

A pulse train with 25 pulses

A pulse train with 70 pulses

A life time as long as $1.2 \ \mu$ s

Best result of 2.2 μ s

Isolating the filament from the background

 $Z_0 = 46m$ E = 60mJ

Simulation

1mm (a), 2 mm (b), 3 mm (c), 5 mm (d), 8 mm (e), 10 mm (f), 15 mm (g), + (without pinhole) (h)

•

Z = 130m

Fig 1 The energy fluence distribution of a single light bullet with doubled energy

Fig 2 The energy fluence distribution of two interacting bullets which are in-phase

The fusion of two in-phase bullets

入射角为0.1°,反相位的两根光丝的相互作用

不同相位的双丝相互作用

同平面,有入射角的情况

(a)入射角为0.01⁰,同相位(b)入射角为0.1⁰,同相位 (c)入射角为0.01⁰,反相位(d)入射角为0.1⁰,反相位

不同平面的双丝相互作用

(a)入射角为0.01⁰,同相位(b)入射角为0.1⁰,同相位 (c)入射角为0.01⁰,反相位(d)入射角为0.1⁰,反相位

Energy interchange

Long distance propagation - theory

Long distance propagation - experiment

Launching another shock wave inside the channel

Evolution of the backward plasma expansion above water surface at (a) 1ns, (b) 2.5 ns, (c) 5ns and (d) 10ns, respectively, for a 5mJ of laser energy.

Temporal development of the shock wave

Setup for laser induced discharge experiment

- 极板加上正高压,小球接地
- 超短脉冲激光在大气中聚焦形成等离子体通道
- 由形成的通道引导小球和极板间放电

Natural discharge and laser induced discharge

• 自然放电

• 激光诱导放电

Experiment for discharge

Summary

 km long plasma channels with rich physics Energy Interchange White light emission Cone emission Third harmonic generation Splitting and fusing of the filaments Vacuum channel

• • •

> Possible applications in laser lightening, fs lidar etc.

